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Abstract : Reaction of DAST with secondary alcohols vicinal to an arene Cr(CO)3 unit
gives with very high exo stereoselectivity the corresponding fluorides; the
stereochemistry of the reaction appears to be exclusively controlled by the organometallic
moiety. Copyright © 1996 Published by Elsevier Science Ltd

The organic chemistry of fluorine is a very rapidly growing field, especially in bioorganic chemistry since
introduction of fluorine can have profound and unexpected effects on the activity of biomolecules.! Thus, the

stereoselective synthesis of organofluorine molecules has become an important research area.?

The monofluorination in benzylic position could be extremely serviceable to the preparation of analogs of
various natural products or medicinal drugs. Several methods have been already reported in this context:
electrophilic additions on double bonds,3 for instance with XeFp,* occur usually with low selectivities. The ring
opening of epoxidesS or aziridines® by Olah's reagent is interesting especially for the stereoselective preparation
of amino acid analogs; a complementary approach involves reductive amination of pyruvic acid derivatives.” An
electrochemical method is particularly useful for the preparation of functionalized derivatives.8 However, very
few examples of enantioselective syntheses have been described so far.? They rely on selective fluorination of
various enolates: chiral non racemic fluorinating agents give moderate enantiomeric excess!0, while
diastereoselective fluorination using an enolate based on an optically active oxazolidinone gives both an excellent

vield and a good diastereomeric excess.!!

As part of our program to expand the utilization of transition metal complexes in organic synthesis!2 we have
recently developed an efficient asymmetric synthesis of dienes with a fluorine atom in allylic position.!3 The
purpose of this note is to describe a new, simple method, based on the same metalloassistance strategy, to effect

stereoselective monofluorination in benzylic position.
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Arene transition metal complexes!# and especially the chromium derivatives !5 are useful intermediates in
organic synthesis. Due to their planar chirality and their easy access in optically pure form, they are also efficient
reagents for asymmetric induction as demonstrated, for instance, with the perfluoroalkylation in benzylic
position. 16 Furthermore, these complexes strongly stabilize vicinal carbocations and react with many nucleophiles
to form stereoselectively new C-C and C-heteroatom bonds.!7 However, fluorination is a notable exception:
reaction of such cations with F- do not lead to the expected monofluorinated compounds. 18

The known!? endo tetralol complex 1 reacts with diethylaminosulfurtrifiuoride (DAST) to give the
fluorinated derivative 2 in excellent yield with a complete diastereoselectivity (NMR control).20 The exo position
of the fluorine atom is easily established by !H NMR with H(2) as a dt (3Je, = 3J¢e = 4.6 Hz).2!
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i: DAST (1.25 eq.), CHxCly, -50°C, 91%, ii: PhaP, DIAD (2 eq.), THF, 0°C, PhCO2H (2 eq.), 56%;
iii: Dibal-H (1.1 eq.), CH2Clp, 95%; iv: Air, visible light, ether, room temp., 42%

The corresponding exo alcohol 3 was prepared from 1 via the Mitsunobu procedure. The reaction of 3 with
DAST gives exclusively the same exo fluoride 2 in good yield. This result proves that the stereochemistry of the
fluoration is independent of the stereochemistry at the secondary carbinol center. The decomplexation of 2 under

standard conditions (air, light) gives the desired compound 4.

The indanols 5§19 displayed identical reactivity: in each case, the reaction gives rise exclusively20 to the
monofluorinated derivatives 6. The exo position of the fluorine is unambiguously established by TH NMR: 3J=
4.6 Hz for 6b and 3J= 1.6 Hz for 6¢.22
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a: R1= R2= H, 87%; b: R1= Me, R2= H, 94%; c: R1= H, R2= Me, 60%.

The comparison between Sb and Se indicates that the stereogenic center vicinal to the alcohol function has

also no influence on the reaction diastereoselectivity.
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All these results indicate that, with these cyclic models, the fluorination is completely
stereoselective and that the stereochemistry of the reaction [anti to the Cr(CO)3 unit] is
exclusively controlled by the organometallic moiety. This appears as a key point for future
developments in asymmetric synthesis since these complexes, like many arene chromium tricarbonyl
derivatives15 are easily accessible in optically active form.19

In conclusion, we have described a simple and efficient?3 method for the stereoselective monofluorination in
benzylic position. Extension of this approach to other derivatives and applications to asymmetric synthesis or to

the preparation of natural products analogs are under active investigation in our laboratory.
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